Enhanced Geothermal Systems (EGS) are quietly transforming how we think about renewable energy, turning one of the Earth’s most underutilized resources—its internal heat—into a reliable and sustainable power source. The DOE Department of Energy (DOE) has estimated that there is approximately 100,000 megawatts of clean, baseload power possible through EGS technology in the United StatesThe beauty of this technology, which extracts thermal energy from deep beneath the surface, is that it is widely applicable, and may be of particular interest in regions where wind and solar face limitations.
Harnessing Earth’s Internal Heat
EGS operates by drilling deep into the Earth’s crust to access hot, dry rock formations. By injecting water into these formations and creating fractures, a closed-loop system is established. The water circulates through the hot rock, absorbing thermal energy and transforming into steam. This steam is brought to the surface to drive turbines, generating electricity. The cooled fluid is reinjected underground, minimizing environmental impact and sustaining the process.
This differs from traditional geothermal energy, which relies on natural reservoirs of hot water or steam. EGS’s ability to artificially create geothermal reservoirs means it can be deployed in regions where conventional geothermal resources are unavailable, dramatically expanding the potential application of this renewable technology.
Reliable Baseload Power
One of EGS’s standout features is its ability to provide baseload power. Unlike wind and solar, which are intermittent and depend on weather conditions, EGS generates firm power, producing electricity around the clock.
This consistent power output makes it an excellent complement to intermittent renewable energy sources, reducing reliance on costly and complex energy storage solutions.
Case Studies in EGS Innovation
Companies and institutions are demonstrating the potential of EGS to reshape the energy landscape.
Fervo Energy is pioneering advanced techniques adapted from the oil and gas industry, including horizontal drilling and well stimulation. Its Utah project, set to produce 320 megawatts of electricity by 2028, is a landmark in renewable energy innovation. This project has already attracted attention from Southern California Edison, which has committed to integrating Fervo’s geothermal energy into its grid.
Ormat Technologies has received a nearly $3.4 million grant from the DOE to demonstrate the viability of EGS at its Brady facility near Reno, Nevada. The project aims to improve non-commercial wells by applying EGS stimulation techniques to develop fracture networks that will enable communication with productive reservoirs and enhance electricity generation.
The project builds on Ormat’s previous EGS work, including a demonstration at the Desert Peak geothermal power plant, which is set to be the first application of EGS technology to supply a producing power project in the U.S. Ormat’s air-