Lun. Dic 23rd, 2024

In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).These four new installations, in addition to existing rooftop solar installations on campus, are “just one part of our broader strategy to reduce MIT’s carbon footprint and transition to clean energy,” says Joe Higgins, vice president for campus services and stewardship.The installations will not only meet but exceed the target set for total solar energy production on campus in the Fast Forward climate action plan that was issued in 2021. With an initial target of 500 kilowatts of installed solar capacity on campus, the new installations, along with those already in place, will bring the total output to roughly 650 kW, exceeding the goal. The solar installations are an important facet of MIT’s approach to eliminating all direct campus emissions by 2050.The process of advancing to the stage of placing solar panels on campus rooftops is much more complex than just getting them installed on an ordinary house. The process began with a detailed assessment of the potential for reducing the campus greenhouse gas footprint. A first cut eliminated rooftops that were too shaded by trees or other buildings. Then, the schedule for regular replacement of roofs had to be taken into account — it’s better to put new solar panels on top of a roof that will not need replacement in a few years. Other roofs, especially lab buildings, simply had too much existing equipment on them to allow a large area of space for solar panels.Randa Ghattas, senior sustainability project manager, and Taya Dixon, assistant director for capital budgets and contracts within the Department of Facilities, spearheaded the project. Their initial assessment showed that there were many buildings identified with significant solar potential, and it took the impetus of the Fast Forward plan to kick things into action. Even after winnowing down the list of campus buildings based on shading and the life cycle of roof replacements, there were still many other factors to consider. Some buildings that had ample roof space were of older construction that couldn’t bear the loads of a full solar installation without significant reconstruction. “That actually has proved trickier than we thought,” Ghattas says. For example, one building that seemed a good candidate, and already had some solar panels on it, proved unable to sustain the greater weight and wind loads of a full solar installation. Structural capacity, she says, turned out to be “probably the most important” factor in this case.The roofs on the Student Center and on the Dewey Libra 

Di